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AN APPLICATION OF THE MORSE THEORY
TO THE TOPOLOGY OF LIE-GROUPS (1);

BY

M. Raoul BOTT.
(Princeton).

1. INTRODUCTION.

This paper is primarily devoted to a detailed account of the results
announced and sketched in [5 |. It will be followed by a joint paper witli
H. SAMELSON on the loop-space of symmetric spaces in general.

We recall the principal results of [3]. Let G be a compact Lie group;
T'C G shall denote a torus in G and C( T) the centralizer of T in G. The
space of loops on G is denoted by ^2(G). (For detailed definitions, see
§9.)

THEOREM A. — If G is a connected^ simply connected^ compact Lie
groups then the spaces 12 (G) aud G/C( T') have the following properties :

a. They are free of torsion;
b. Their odd Betti numbers vanish;
c. Their Betti numbers can be read off from the diagram of G.

The manner in which the diagram of G determines these Betti numbers is
the following one. Let D denote this diagram on the tangent space, t, to a
maximal torus TC G. We let ^ be a fundamental chamber of D and denote
by A the fundamental cells of D. If JTet, ^(-^0 shall be defined as the
number of planes of D crossed by the straight line joining X to the origin
of t. The function ^ is constant in each fundamental cell and this constant
value is denoted by ^(A) . In general it s is any line segment in t, ^(s) shall
equal the number of planes of D crossed by s. We denote by r the lattice
of G in Z>.

(* ) This research was supported in part by the U. S. Air Force under contract
number AF 18(600)-1109 monitored by the Office of Scientific Research.
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THEOREM B. — 1° The Poincare series of the loop-space, i2(G'), is
given by

P(^(G),t)=^t^\

where A runs over the cells of the fundamental chamber ^.

2° If^y is a lattice point ofF in t, and if C(^Y) is the centralize r of the
direction JT, then the Poincare series of G/C(A^) is given by

P( G/CW ; t) = { ̂  t^} t-^W

where now the summation is extended over the cells of 57 which contain X
in their closure.

As every C ( 7 ' ' / ) is conjugate to some C(^T), ^T^r, part 2° of this theorem
describes the homology of all the spaces G / C ( T ' ) . It also relates their
Poincare series to that o f^ (G) .

These formulae can of course be expressed entirely in terms of the root-
forms of G on t :

Let { 0; \rj (i' = i , . . ., /n), denote the root-forms on t which take positive
values in 57'. Also let H^ denote the Weyl group ofG in t. Finally, ifJTet,
define a function ^*, on W by :

A* (w) == number of the root-forms j 6^ - J£F whose values at X and w ' A "
differ in sign. Thus,

A * ( w ) == number of planes of the infinitesimal diagram D'\ crossed by
the line from X to w ' X . Finally let p(^T) denote the order of the subgroup
of W which leaves JT fixed. In terms of these notions, theorem B is equi-
valent to :

THEOREM B'. — i° The Poincare series of^l(G) is given by

„ 2^[8,W]
P^(G)^t)=———j t^ dv,

I A 1 ^

where the integral is taken overly \ A | denotes the volume of a fundamental
cell o/Z), and [a] denotes the greatest integer less than a;

2° The Poincare series of G/C(^T), X arbitrary in t, is given by

P{(G/CW);t}^——.^ t^.
w€^

In particular (for X in ^) the iq^ Betti number of G/T is equal to the
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number of elements in W which change the sign of precisely q of the root-
forms {Qi \-j.

An immediate corollary of these theorems is that 7::.,(G) is a free-group.
If G is simple, then 7T:{(6') == Z.

At the time of publication of |5], these results contributed to the subject
involved in two ways.

a. They gave a general proof that the spaces G / C ( T ' ) and ^(G) are
torsion-free.

b. They gave new formulas for the Betti numbers of the spaces G/CC^)
and^(^r) .

With regard to ^, it should be recalled that BOREL [^a] had already
described the rational cohomology ring of G / C ^ r ' ) (as of all homogeneous
spaces G/ff^ with H of maximal rang in G) in terms of the Weyl groups of
G and C(77). His construction therefore yields the Betti numbers of the
G / C ( T f ) as a byproduct. In the case of G/T, for instance, BOREL proves
that over the rationals I I * ( G / T ) is isornorphic to a quotient ring,
P(a'^, .. ., d"/)//"^, of the polynomial ring in / variables modulo the ideal, /4-,
generated by the invariants of positive degree of a group of reflections (the
Weyl group of G) in (.z'i, . .., xi).

The rational cohomology ring of ^l(G) can also be described in an explicit
manner. Following [11 6] there exists a map, /, of an appropriate product
of odd spheres

5^-1 x S'1'119-1 x ... x S'2'^-1

into G, which induces an isomorphism onto in the rational cohomology
groups. Hence, by Serre's ^-theory, / induces an isomorphism of the
homotopy groups modulo finite groups. It follows that the map/ of the
loop-spaces, which is determined by/, has the same property. Therefore f*
will again be an isomorphism onto over the rationals. On the other hand,
the Poincare series of the space of loops on this product of spheres is

j I _ ̂ i-l) j-l >< . . . >< { i _ fKnu-i) ^-1.

It will be seen in Appendix II how a comparison of these two expressions
yields a new relation between the m'^s.

Concerning the results summarized under a, it should be remarked that
Borel had already at the time of publication of [o] shown that G/Tis free of
torsion in all cases except Ec, E7, Eg. Since then both he and CHEVALLEY
have announced proofs of this general fact, using a cell-subdivision of these
spaces found independently by CHEVALLEY and HARISH-CHANDRA [4^]. By
means of this cell-subdivision CHEVALLEY also obtained the formula for the Betti
numbers of G/T given in theorem B ' . Finally this same formula for the
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Betti numbers of GIT was derived independently by BOREL and HIRZEBRUCH,
using the general Riemann Roch theorem [6]. On the other hand, there is
at this time no alternate proof that 12 (G) is free of torsion.

In this paper a generalization of the result concerning £2(6?) is proved.
Theorems A, B, and B' follow from it easily. For ^Tet, let N{^) be the
orbit of exp^T under the adjoint action of G on itself. Thus

N{X) = \^J a- { exp^ j <7-1.
o'ec'

Let N ( J ^ ) be the orbit of X under the Weyl group of G, and set P equal to
the orbit of a general point, ̂ €t, under the lattice T. Finally S (t, ^(^T), P)
shall denote the set of straight lines joining a point of ^(^T) to a point
of P.

We study the space, £2(G, ^V(JT), P), of paths in G starting on 7V(JT)
and ending at P == expP, and prove :

THEOREM C. — The space £2(G, N{X)^ P) is free of torsion for any
^€t. Its odd Betti numbers vanish. The Poincare series of this space
is given by

PWG,N(^P)^)=^t^\

where s runs over the straight-line segments o/S(t, TV'(^),^).

As mentionned in [5J, our procedure amounts to a straightforward appli-
cation of the Morse theory to the Riemannian geometry of G. This theory,
in its most geometrical and classical form, applies well to the study of a Lie
group for two reasons. Firstly, G admits so many global isometries that
focal points which usually are a local phenomena along a given geodesic,
can be described in terms of global motions. This mobility of G is expressed
liere in the two theorems that the adjoint action of G, both on G and on the
Lie algebra of G, is « variationally complete ».

Secondly, the indices which occur in the Morse theory, here all turn out
to be even. Because of this very fortuitous circumstance the Morse inequa-
lities must be actual equalities for purely « dimensional » reasons.

In a subsequent paper SAMELSON and I will study the general situation
when a group, AT, acts on a Riemann manifold in a variationally complete
way. (This turns out to be the case for instance in the symmetric spaces.)
In the general case the Morse inequalities do not become equalities for
dimensional reasons. Nevertheless we can show that the equalities hold, at
least moda, and so compute the mod 2 homology of certain loop-spaces and
certain homogeneous spaces.

This paper, then, is mainly a « Zusammenstellung » of well known propo-
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sitions in two disciplines : the Morse theory, and the geometry of Lie groups
due largely to CARTAN. We start with a review of the pertinent facts and
definitions in the theory of Morse.

2. ./-FIELDS.

Throughout this paper, M shall denote a C^, paracompact manifold in a
fixed complete Riemannian structure. Instead of the term, C00, we often

,use "• smooth ". Let M p . p ^ M , stand for the tangent space [2] to J/at/?,
and if' JT, Y^Mp^ (^T, JT) is their inner product.

A map
^:T{->M

of the real numbers, R, into M is called a geodesic, if :

(2.1) g satisfies the differential equations of a geodesic [10J, for all < € R ,
(2 .2) t is proportional to arc-length from g{o).

The restriction o f^ to a nontrivial interval of the type [o, a], o << a, in R,
will be called a segment of g. Segments will always be denoted by the
symbol s.

A smooth function : t—^ Y^ which assigns to every ^eR, a tangent vector
Yt in Mg^^ is by definition a ( < vector field along g ".

The tangent field along g is by definition the assignement t-> X^ where

^f=\im[f{g(t+h)\-f{^t)}]/h
h^O

for smooth functions, /, on M.
If AeR, let h^Mg^->Mg^k) be the isomorphism, of the two spaces in

question, which is defined by parallel translating the vectors of the first space,
along g^ into the second one. Now if t—>- Yt is a field along g, the formula

r;=iim{r,-/^-,j/A
h^O

defines a new field : t -> Y't along g — the covariant derivative of Y along g ,
In the theory of Morse the vector space of l' infinitesimal isometries oi g^

plays a crucial role. We refer to it as the space of Jacobi (or just J)-fields
along g^ and denote it by J g . This vector space can be defined in terms of
the notion of a « variation » of g. Such a variation shall be a family of
maps

V^R-^M

indexed by a in some vicinity of o on R satisfying the following conditions :

(2.3) Vy.{t) depends smoothly on a and t ;
(2.4) Vy, is a geodesic for each a;
(2.5) V,=g.



256 R. BOTT.

DEFINITION 2.1. — A vector field : t-^Yi is a J-field along g^ if and only
if there exists a variation Vy, of g^ so that

(2.6) r ^ ^ y ^ t ) ] (<eR).
OCt |a=o

REMARKS. — ( i ) The formula (2.6) is meant as a shorthand for

^/=^/(^))^;
(2) The factor space Jg can be alternately characterized as the space of

solutions of the l l Jacobi equation " along g. In our notation this question
takes the form

(2.7) r;+/?(^r,, Yi)A\=o
where t—>- Y'[ is the second covariant derivative of Y along g^ t—^Xi is the
tangent field along g^ and R(^ti Yi) is the linear m^Mg^—^Mg^ denned
by the curvature form evaluated at ^T/, Yi.

We will be interested only in two facts which follow trivially from this
definition.

(2.8) If s is a segment of g^ and /, is defined as the restriction of fields in
Jg to 5, then the map

s^'.Jg ->J^

defined as this restriction, is an isomorphism onto.

(2.9) Y^Jg is determined uniquely by the initial values : JKo and Vy.
Hence

(2.io) dim^==2dim^.

3. FOCAL POINTS.

Let N be a proper, smooth, submanifold of M. A geodesic, g^ will be
said to be a geodesic of (J^f, N) — or of M mod TV — If :

(3.1) ^starts on N\
(3.2) The initial direction oi g is perpendicular to N.

Similarly we speak of geodesic segments, s, on (My TV). For these objects
the infinitesimal variations which preserve (3. i ) and (3.2) are of special
interest. They constitute a subspace, J^ of Jg which we call the focal
subspace of Jg relative to N. Precisely :

DEFINITION 3 .1 . — The field t -> JT< is contained in J^ if and only if
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there exists a variation Vg. ofg such that

(3.3) y < - ^ ( < ) (<€R) ,
</<X a=o

(3.4) Va(o}eN,

(3.3) iS^^) €^1 [9==^a(o)],
Ot 1=0 '

where A7! denotes the orthogonal complement of Nr, in M(,.

For a segment s of g^ J^ is again defined as the image of J'J in Js under
the restriction map : s^\Jg->Js'

DEFINITION 3 .2 .— Let s be a geodesic segment M modN. The siibspace
of J'J consisting' of the J-fields which vanish at the end-point of s shall be
referred to as the focal kernel of s modN^ and will be denoted by A^^s).
Also^

a. If dimAN(s) > o, then s is called a focal segment ofN in M;
b. The end-point of a focal segment is called a focal point ofN in M;
c. The set of all focal points of N in M is called the focal set of N in M.

REMARKS. — ( i ) Focal points are clearly the generalization of conjugate
points along a geodesic (the case : N ==p.). At the same time they genera-
lize the focal points of elementary optics. For instance, if M is Euclidean
3-space £3, and N is the circle : x\ -+- x\ == i, then the focal set of N in M is
precisely the .z^-axis.

(2) Clearly J^ can be characterized in terms of certain initial conditions
on the elements of Jg. These classical initial conditions [9] take the follow-
ing form :

PROPOSITION 3 .1 . — An element Y^Jg is in J^ if and only if

(3.6) -To€^,

(3.7) ro4-7,.ro€Aa,
where : p is the initial point, g{Q)i of gi and Tg is a self-adjoint linear
transformation of Np^ determined completely by g. The form ( T g X ^ Y)
on Np is the second fundamental form at p relative to g.

An immediate corollary is

(3.8) dim7y=dim7V.

Tg can be denned in several ways. We recall the following geometrical
definition which follows readily from the formulae in [9; p. 26]. Suppose
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^starts a t / jeA^, with tangent-vector .-TeTVl. It is the fact that X is per-
pendicular to A' at p which gives rise to the transformation Ty on Np. To
see what T g ' Y ^ Y^Np^ is, \ety(t) be a curve on A7, starting at/^ in direc
lion F. By parallel translation X defines a field, A, along } ' ( t ) . Let
^-->'-^7 be the field along j(^) w^hich assigns to t the orthogonal projection
of^T/ on TVr(/,. Now^i because X^ vanishes, the limit

lim X^t
t^o

exists, and defines the vector T^-Y in Np.
A point of M — N which is not in the focal set of (M^ TV) is called a

regular point of (M, N). According to a theorem of Morse [9], the regular
points of (T^f, N) are plentiful. Namelv,

PROPOSITION 3.2. — Let s be a geodesic segment of (M^ N). Then the
index of 5, relative to TV, defined by

(3 9) ^N(s)==^dlmAN(sf)
s'Cs

is always a finite integer.
(Here the summation is to be extended over all subsegments of s.)

PROPOSITION 3.3 — The regular points of (M, N) are everywhere dense
in M.

4. THE MORSE SERIES OF M mod TV.

Suppose that M~^N as before, and that P is a fixed regular point of
(M, TV). To this situation MORSE assigns a formal power series, 3Vi(M, TV,
jP; t ) , [or more shortly c)1l(^)] which we now describe. Its interest lies in
the fact that although this series is determined entirely by geometric consi-
derations, namely by the numbers dimA^.?), described in the last section,
it nevertheless has topological implications.

Let S(M, TV, P) be the set of geodesic segments of (M, A7) which end
at P, and along which the parameter is precisely arc-length. Because P is
regular, no segment of S(M, A7, P) is focal relative to A'.

DEFINITION 4.1. — The Morse series of(M^ TV, P) is defined by

(4.i) 3}t{M, N, P; t)=^t^ [seS(M, N, P)],

where ̂ N^) is the index ofs relative to TV, as defined by (3.9).

REMARKS. — Clearly one can consider this series only if its coefficients are
finite numbers. If this fails to happen, as it may, we say : the Morse series
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of (-V, A, P) does not exist. For instance, if M is the flat torus. A'a point
0, S(M, Q, P) will contain an infinite number of elements, all of index o.
It seems likely that the Morse series exists whenever 7:1 (M^ i\) is finite;
however, I know of no proof of this fact, and it will not be needed. In any
case the series 4 . J has only a countable number of terms. This is a direct
consequence of the regularity of P and the paracompactness of M. For, as
can also be found in MORSE [9] :

PROPOSITION 4 .1 . — The set S(M^ YV, P), (P regular !) contains only a
Jinile number of segments of length less than a given number.

0. THE MORSE INEQUALITIES.

The topological implications of 3\i ( t ) are contained in tlie ii Morse ine-
qualities " which relate 3Vi(t) to the Poincare series of a function space,
i2(J/, TV, P), constructed over M. Following SEIFERT and THRELLFALL [10]
rather than MORSE for the time being, this space ^(M, YY, P) is defined in
the following manner :

DEFINITION 5.i. — i2 ==•- ^(M, TV, P) shall denote the space of all piece-
wise regular maps of the unit interval [o, i] into M which are parame-
trised propartionaly to arc-lengthy take o into a point of N and map i
onto P.

A topology is introduced into ̂  by making Q, into a metric space

p(^i, u.^)=z max d(ui(t), ih(t)) + | L(ui) — L(u.) \
<e|o,i]

for two maps z/^e^, where L(i(,i) is the length ofi/i andd(p^ q), p^ q^M^
is the metric on M.

Let H{Q.') k) denote the singular hornology [10J, of ^ with respect to
coefficients k. If k is a field,

( 0 . 1 ) P(^; k', f)=^dimff^; /c)^
/(^O

is the Poincare series of 12 relative to k,

REMARK. — In homotopy theory one usually treats the space, i^, of conti-
nuous paths from N to P in M endowed with the compact open topology
Though not of the same homotopy-type, the spaces ̂  and Q! have isomorphic
singular homology groups, as is shown in [10; p. '77]. The groups I I ( ^ )
are therefore topological invariants of (M) YV, P).

The Morse inequalities. — If the Morse series of (M^ TV, P) exists, then
the Poincare series of i2==^2(J/, N, P) exists relative to any field k.
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Further
(5.2) 3Vi(M,N, P\ t)-P{^ k, t)=(i-^-t)B(k\ t),

where B(k; t) is a formal series with non-negative coefficients.

For a discussion of these inequalities, see paragraphe 12. Here we will
only derive an immediate corollary to this theorem on which all our appli-
cations are based.

COROLLARY 5.1. — If the Morse series of (M, TV, P) exists and contains
no odd powers of ty then

3VL(M, TV, P', t)=P(^l\ A ; /) for any k.

In particular ff(^) is then free of torsion.

PROOF. — I.

3Xi(t)=^m^^ P(^ k, t)=^p^', B{t)=^b,t^
Z'^O f^O ^0

the inequalities of Morse imply that

mi— pi==bi-^-bi-i ( (==1 ,2 , . . . ) ,
mo—po=bo

with bi^o.
Hence 771^4.1== o (i== o, i , 2, . . . ) implies

&2<-n 4- b^= o whence 6^+i = o, &2i== o,

i. e. ff(t) ̂  o. The rest is clear.

6. VARIATIONAL COMPLETENESS.

Suppose that AT is a compact group of isometries of the Riemannian mani-
fold M^ and that N is an orbit of a point in M under the action of AT. In
this case the infinitesimal motions of M determined by K^ are universal
J-fields mod TV, i. e. they restrict to elements of J1^ along any geodesic segment,
5, of (M^ TV). When the action of K on M is sufficiently rich, it may
happen that A^^) consists entirely of fields which can be extended to the
global infinitesimal motions of K. In this very special situation, which
however is the one we meet in both subsequent applications, the Morse series
of (My N. P) can be computed very simply. Here we derive this new for-
mula for the Morse series, under this extension condition, which we call
variational completeness. Let TT : K x M->Mbe the left representation of
K on Sunder consideration. We also use

(6 .1 ) T:(a):M->M
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for the transformation determined by a^K. We write o(p) for the orbit
of/? in M under K.
(6.2) o(p)=n(R)p.

The following definition enables one to treat all orbits at the same time.

DEFINITION 6 .1. — A geodesic segment, s, will be called transversal
(propertly ^-transversal) if its initial direction is perpendicular to the
orbit of its initial point. Ifp is the initial point of such a segment^ /N

[ ^(s)], N= o(p), will be denoted by J^[i^(s)} respectively.

The Lie algebra [2] of K shall be denoted by k, and is identified with the
tangent space to K at its neutral element. The mapping TT determines a
representation, TT, of k by vector fields on M. These are the infinitesimal
motions of K on M. By definition :

(6.4) 7 r (^ -{7r (exp^r ) jp} (^ek,/?€A/).
01 1=0

Here, as throughout, exp : k->A', is the usual exponential map [2|, which
takes ^€k into the corresponding point on the one-parameter subgroup
generated by X.

If s is a transversal geodesic segment on M\ the variation

(6.4^) V^(t)==7i:(expa^)s(t)

clearly has the properties enumerated in paragraph 2. Formulae (6.3) and
(6.4) therefore justify the earlier remark that the restriction of Tr(J^) to 5,
is in J^. We let TT., : 1s.->J^ stand for TT followed by restriction to s.

DEFINITION 6.2. — The action of K on M via n is called variationally
complete, if for any ^-transversal geodesic segment^ 5,

(6.5) A^CTr^k).

Let 0(7?), p^M^ be the subspace of k, whose Tr-image vanishes at p .
Then c(^)Ck, shall be the kernel of 7^. Clearly then,

(6.6) dim o (p)= dim k—dimc(/?).

Further, if s is transversal, with endpoint, </, then (6.5) implies that the
sequence

(6.7) o-^c(s) ->c(q)^>A'n(s)->o

is exact. From (6.6) and (6.7), it follows that

(6.8) dimA^^r^dimk—dimc^)} — d i m o ( y ) .
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Now suppose that s is a segment of a geodesic which passes through a
point, jP, on an orbit of maximal dimension. Then

(6.9) c(s)=c(P)

because the identity component of the stability group of P leaves Mp fixed.
In that case therefore, (6.8) takes the form

(6.10) dimA^) ===dimo(jP) — dimo(^).

PROPOSITION 6.1. — Let the action of K on M be variationally complete^
and let N be the orbit of any point of M under AT. If a regular point, P,
of M— N is chosen on an orbit of maximal dimension^ the index, A^^),
of any segment s € S(M, TV, P) is given by

^(s)== ̂  o { s ( t ) } ,
o^t^a

where s^=-.g\[o, a], a> o and 8 ( p ) = dim o(P) —dimo(/?) , p^M.

This proposition follows immediately from (3.9) and(6 . io) . In this
situation, then, the Morse series of (M^ TV, P) can be read off if one knows
the segments of S(M, N, P), and the places where they intersect orbits of
lower dimension. Remark also that because the maximal orbits make up an
open set in M, P can always be chosen on such an orbit.

7. THE VARIATIONAL COMPLETENESS OF THE ADJOINT ACTION.

G sliall stand for a fixed compact connected Lie group, in a fixed left-and-
righl-invariant Riemannian structure. Under the adjoint action of G on G
we mean the map TT : G x G ->• G defined by 7r(o-)T==ow-1.

PROPOSITION 7.1. — The adjoint action of G on G is variationally
complete.

We will use the following notation :

9 the Lie algebra of G, which is identified with 6r£, the tangent space to G
at the identity £;
^[^7^ left [right] translation by o-e G\

lfr[^a]^ the linear maps induced by ^[r<y] on the respective tangent spaces.

Ado-, l^r^ -1 applied to $.
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Also recall that

(7 . i ) 7r((7)exp^r=:exp(Ad(7.jr) (^e$, cr^G),

(7..) Ad^r^^ri^lim^^^;^-7}^
<-^o ( ^ )

(7.3) (Ada..!, Ad(7.r):=(Jr, r) (JT, re^),
(7.4) ([^ ^L ^)+(^ [^ ^1)=° (^ ^ ^€9),
(7.5) The geodesies of G coincide with the translates of one-parameter

subgroups of G.

By definition 6.2, proposition 7. i is equivalent to the following one :

PROPOSITION 7.2. — If s is u ^.-transversal geodesic segment^ then
A^^CTT^).

LEMMA 7.1. — For ^€9, 7r(^) is the assignment.

(7.6) 7->r^X-^X.

PROOF. — This follows immediately if we rewrite exp(^r)(7exp(— tX}
in the form r^\ exp(^JT) exp(— Ado-(^)) }.

LEMMA 7.2. — The segment s : t->7 e\y(t^), ^€9, o^t^a, a> o;
is transversal if and only if
(7.-7) Ado-jr:=.T.

PROOF. — By lemma 7.i the tangent space to the orbit through o- is
spanned by

r^Y-l^Y (^€9).

The initial direction o f ^ a t o - is clearly l^X. Now

(/^r,(^-/<0<0==o
is equivalent to (^.{/—Ado-^^^o. By (7 .3 ) this expression trans-
forms to

- ( {Adcr - - / }^ 9)=o.

In other words : Ad<7^r==jr.

LEMMA 7.3. — Let s be a ^-transversal geodesic segment^ with initial
point o-, and initial direction l^X, ^€9. Then c(s)C^ is characterized
by the equations
(7.8) [.r, y]==o, Ad(7r=r.

PROOF. -— Recall that by definition, c(s) is the kernel of ^.s:$—^?.
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If 7r.y(.K)=o, then /•ffexp^x^^^exp^.x) Y for o^^^a(a>o). Equivalenlly,
Ad { exp(^JT) (jr=:Adcr-1-y, o^^^a. Because the righthand side is
independent of t^ [ l̂", Y'\ must vanish. But in that case exp^JT commutes
with JK, and therefore Ado^-JK^ Y. The converse is no harder.

From (3.8) it is known that dimj^= dimg. Hence 7r (9) does not make
up all of J^. There is missing a subspace, complementary to 7r,,(g), of the
dimension of c(s). To construct it, consider the map

(7.9) w,:c(s)->J^
denned by
(7.10) o).s.(Z)<=:^exp<xZ [Z €C(^) , o^t^a].

Notice that ( ^ s ( Z ) is not the restriction of a vector field on G. It is,
however, a properly defined field along s. To show that Ws(Z)C^i consider
the following variation of s.

For Zec(5), a€B, let V^:T{->Gbe defined by

(7.11) V ^ ( t ) = 7 e x p t \ A ' - { - ( x Z } .

Because T^a(o)=^ this variation will satisfy the conditions (3.4), (3.5), if
and only if Vy, starts perpendicularly to 0(0'). This initial direction is
clearly la [ X -\- a Z } . By lemma 7.2, this is the case because Z€G(^), and
hence Ad<TZz= Z.

On the other and, .- Vy,{t) is easily seen to agree with ( ^ s ( Z ) if one
act. a=o

uses the fact that X and Z commute.

LEMMA 7.4-. — Let s be a transversal segment on G. Then :

(a) Every element V ̂ .J^ is of the form

r==7r.,(r)+c*),s.(Z), [reg, Zec(^)];
(b) If for Fe^ Z^c(s),

7T,(r)+CO,(Z)=0.

Then Z=o and Fec(s).

Thi^ lemma can be summarized in the statement that the sequence

(7 .12) o->c(s)->^(Qc(s)-^J^->o

is exact. Here the first homomorphism includes c(s) in 9, while the
second one is ri:sQ) co.,.

PROOF. — Part (b) implies part (a) by a dimension argument. To prove
(b) consider what it means that the expression ^.( Y) + w.^(Z) represent o



APPLICATION OF THE MORSE THEORY. 265

in J^. If s is of length a > o, this condition translates into

(7.13) j r — A d { o - e x p ( ^ r ) } Y -^-tZ=:o (o^t^a).

Therefore, for t == a \

(7.14) \Y, Z ) — ( A d { ( 7 e x p ( a . T ) } r, Z)4-a(Z, Z)=o.

By (7.3), and because Z€C(^), the first two terms cancel. Hence Z==o.
But then (7. i3) expresses the fact that 'hs ( Y ) == o, i.e Yec(s).

The proof of proposition (7.2) is now immediate. By virtue of (7.12),
it is sufficient to show that the inverse image of A^ under TT.< (j) co.,. is in 9.
The pair Y^ Z, ^€$, Z ^ c ( s ) w^ll be in this inverse image if and only if

ns ( Y) + W s ( Z ) vanishes at the end-point

of 5, say at o-expaJT. But then (7 . i3) still holds with t = a^ and one
concludes, again via (7 . i 4 ) ? that Z= o.

8. THE GEODES1CS OF (G, TV, P ) .

Recall the following well-known facts about a compact connected group G
[i],m-

(8.1) G ̂ contains a maximal torus;
(8.2) Two maximal tori are conjugate;
(8.3) Every element of G lies on at least one maximal torus;
(8.4) The component of the identity, C'((7), of the centralixer of an

element o"€ G^ is the union of the maximal tori containing o".

It follows immediately from (8.4), that if P is a point on an orbit of
maximal dimension, then the centralizer of P is precisely a single maximal
torus T. Let P be a fixed such general point of G. Let A7 be any orbit of
TT on G which does not contain P.

PROPOSITION 8.1. — Let P a general point of G and T the maximal
torus it determines. If N == o (a) is any orbit of G under TT, which does
not intersect P, then

S ( G , N , P ) = S ( T , N r \ T , P ) .

PROOF. — It o-e6r, let C(o-) be the centralizer of o- in G. Lemma 7.2
obviously yields the following result :

LEMMA 8.1. — For any a^ G, the tangent spaces to C (cr) and 0(0'), ata^
are complementary and orthogonal.

In particular, therefore, at P^ the space Tp makes up the orthogonal
complement of the tangent space to the orbit through P.
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It is well known that if a geodesic, ^, is perpendicular to an infinitesimal
isometry, X^ at one point, then it always remains at right angles to X.
Hence every segment s<E S (G, 7V, P) (which must be perpendicular to the
orbit N at its start) is perpendicular to o (P) at its end point. The
segment s is therefore tangent to T at P. Because T is a subgroup, s will
have to lie in T. Conversely a geodesic segment on T joining T'eA'nT7

lo P, is perpendicular to o ( r ) at its initial point and therefore is
in S(M, A, P).'

The set of segments S (77, A'n 77, P) is conveniently described on t, the
universal covering space of 77, which is here identified whith T^, so
that exp 11 becomes the covering projection.

A n T will be a finite set of points because the orbits are compact and
meet T at right angles. LetTVetbe the image of any cross section ofTVn T
in t, and let *?(t, A", P) denote the set of all straight lines in t which join a
point of A to a point Pet which covers P. Because paths in T lift
uniquely to t, once their starting point is lifted, S(t, A", P) gives a faithful
representation of S( T, /Vn 77, P) = S (G, N, P ) . We record this fact in
the following proposition.

PROPOSITION 8.2. — The exponential map exp 1 1 , maps the straight lines

o»/*S(t, TV, P) in a one-to-one fashion onto the segments of S(G^ .V, P).

To read off the Morse series of (G, 7V, P) it is now sufficient to find the
intersections of the segments of S ( 77, A'n T, P) with the intersection of the
exceptional orbits with T. These points, the so-called singular points of 77,
form a set - D ( G ) in T whose inverse image under exp 11 is called the
diagram of G on t. It will be denoted by7)(G); and its main properties
are reviewed in the next section.

9. THE DIAGRAM OF G.

As before let Tc G be a maximal torus of the compact connected group G\
and let tC9 be its tangent space at £. The dimension, /, of T is the rank
of G. A point, cr, of T will be singular if the dimension of its centralizer,
C (o-), is greater than /. On the other hand the tangent space of C(a) at e is
clearly spanned by the subspace of g which is left pointwise fixed by Ado-.
The study of singular points is therefore reduced to the study of the adjoint
representation restricted to 77. This action of T on 9 decomposes q into
orthogonal invariant subspaces,

(^i) 9= : t®el®e,©...®e^

with t poinlwise fixed under Ad | 77, while each Oi is a two-plane on which T
is represented nonlrivially by rotations.
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Let UiC T be the subgroup of T which leaves the plane e< point\vise fixed
under Ad | 77. Clearly the union of the Ui constitutes tlie set of singular
points of T. Further ifo-e T is on precisely/of the sets Ui(i=z i, . . ., ni)
then dim C (o-) == /+ 2/, and hence

(9.2) (W==2/

(o is here the function denned earlier in Section 6).
Let { u,[} (i=: i, . . ., m) be the tangent space to Ui at £. The planes { u /}

in t form the infinitesimal digram of G in t. It shall be denoted by D' (G).
The diagram proper, Z > ( G ) , consists of the complete inverse image in t of
the singular points in T. It will therefore consist of families of equi-spaced
planes, each family parallel to a certain u^e^(G').

The kernels Ui are by no means arbitrary. Among others they have the
following properties [I], [7], [12].

(9.3) dim^n^/:=^—2 if i^j.

Hence Ui\-^- U, for (' ̂  /.

(9.4) Ui has at most two components,
i=m

(9.5) r\Ui=Z is the center of G.
j--\

The diagram, D ' ( G ) , can also be described in terms of the « root forms
of G » : the quotient group T/Ui is one-dimensional and therefore isomorphic
to the circle group, R/Z, of the real numbers modulo the integers. Further
such an isomorphism T/UiwK/Z is well determined up to sign. Tlie
canonical map T-> T/Uf therefore lifts to a linear function

t-^R

which is well denned up to sign. We denote it by ± 9,. The totality of
the ± 9f are the root forms of G on t. They are met more directly in the
infinitesimal theory of Lie groups. In any case D' {G) consists of the points
which are in the kernel of at least one of the 9^. Similarly

771

D ( G) = \^J { Xf=. 1 1 9, (JT) == o mod i;.
1=1

A connected piece of t — D ' ( G ) is called a fundamental chamber of G
on t. We denote such a set by the symbol 9'. Similarly, A, shall be
reserved for the components of t — D( G). The A are the fundamental cells
of G in t.

All these notions are intimately connected with a certain group of auto-
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morphisms which G induced on T. This is the group W-\ normalizer of T
in G } / T . Clearly W acts on T and therefore on t as a group of auto-
morphisms. Further it must leave the singular set invariant. W is the
Weyl group of G.

It is known that :

(9.6) The faithful representation of W on t is generated by the reflec-
tions of t in the planes VLi of D ' ( G ) ;

(9.7) Every fundamental chamber, ^, oi D'(G) is simultaneously a funda-
mental domain of W in t.

The elements of W permute the totality of root forms { ± 9, |. A funda-
mental chamber 5^, singles out precisely m-root forms which take on positive
values in ^F. Such a system of root forms is referred to as a positive set of
root forms with respect to ^r, and is denoted by { 6, }^. On the set { 9, }y
the Weyl group is therefore represented by signed permutations.

W and D ' ( G ) are essentially infinitesimal invariants of G. Thus if G
and GI are locally isomorphic, such an isomorphism induces corresponding
isomorphisms of W^ onto W^_. The global properties of G are described by
llie extended Weyl group on G. This^ is the transformation group W of t,
generated by W and the covering transformations of i-> T. This latter
group, r, is of course abstractly isomorphic to 7:1 ( T) = Z + Z -+-. . . 4- Z
(/ factors).

The orbit of a point Pet under F is a lattice of points in t. The lattice
corresponding in this manner to the origin of t shall also be denoted by r.
The lattice T is left invariant by the action of W.

If Gis connected, simply connected and compact, TV is described by D(G).
In that case it is known that :

(9.8) W is generated by the reflections in the planes ofD(G). From this
it follows that;

(9.9) Each fundamental cell of D(G) is a fundamendal domain of \V
ont;

(9 . io) The closure of every fundamental cell is compact and contains
precisely one point of the lattice r.

In this case then the effect of w € W on t is completely described by the
effect of w on one cell of D(G). The following lemma is a consequence of
this fact :

LEMMA 9.1. — Let G be connected^ simply connected and compact.
Let ^ be a fundamental chamber of W on t, and let A^ be the unique cell
of D(G)^ which is contained in ^', and whose closure contains the origin
oft. Then there is a one-to-one correspondence between the cells of the
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form

. ^ {r^i (r^r)
and the cells of the form

b. A€^.

This correspondence is established by elements of W\

PROOF. — Set
A=[^^\^e^}, ^ = = J A [ A € ^ J .

An element vA^ is in some fundamental chamber ^/. By (9.8) there exists
a unique element w'€ W with w ' ^ ' ^ z . ^ . We assign to yAy, the
element w'vA^c^. This defines a function,/, from A to £.

( 1 ) The function / is one-to-one. For if

w\ Yi A^ = w^ y2 ̂ r, Y, e r, w; € r̂,

then y71 { w[ }-1 ^3^2 is the identity by (9.9). Hence

{w\ i-1^^^1.

This element must lie in Wf^T^ which clearly is the identity. Hence

Ti==Y2, w\=zw'^.
(2) / is onto.

Let the closure of A e ̂ , contain the lattice point Y. Then the closure
of y—1 A contains the origin of t, and therefore differs from Ay by an element
of W. That is,

A ^ y w ' A y , yer, w'€ W.

But then A'=: w'—^w A^ is an element of A which maps onto under /'.

10. FIRST APPLICATION : ̂ 2(6', YV, P).

Let G be a compact connected and simply-connected Lie group, TC. G a
maximal torus of G, N any orbit of the adjoint action of G on G. Let P be
a general point of T not on N. Finally S(t, A^, P) shall be the set of
straight lines in t = Te, already defined in- Section 8.

THEOREM I. — The space of paths, ^l (G, N, P), is free of torsion. Its
odd Betti numbers vanish, and the Poincare series of Sl(G, N, P)
coincides with the Morse series of (G, TV, P).
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THEOREM II. -- The Morse series of (G, N, P) is given by the formula

( lO . i ) ;m(G, N, P; t)=^t^ [^€5(t, N, P)],

where \ (s) z= number of planes of D (G) crossed by the line s.

The proof of theorem II emerges from propositions 6.2, 7.1, 8.2 and the
expression (9.2) for the function 8. The series (10.1) has finite coefficients
because the cells of D{G) have compact closures. Because this series has
no odd powers of ^, corollary 5.1 applies. This proves theorem I.

Theorem C of the introduction is also immediate. For if N is the orbit
of exp A'^ ^T^t, then a possible cross section over Nr\ T is the orbit of A'
under the Weyl group W. This orbit can therefore play the role of TV in
theorems I and II.

In the special case P=s, the space ^(6?, £, P) is by definition the
« loop space » I2(6r) of theorems^ and 2?. In this case S(t, 0, P) consists

of the segments s == OQ where Q runs over the points vP; v^r. If one
now applies lemma 9.1 to this situation, one obtains the formula of theorem 2?,
Part 1, directly from theorem C. To obtain the formula of theorem B'',
Part 1, observe that in 5',

m

^(A)==^[9,(J-)] for any .Tin A, 9, e{ 9, )y.
i==.l

Therefore when the integral j is replaced by ^. j one obtains the
^ A€^

series ^. t2^^ of theorem B.
A€^

11,. SECOND APPLICATION G / C ( A ' ) .

Let Mbe an open, spherical disc about the origin in $, which is so small
that exp | Sl maps Sl homeomorphically into 6r. The image of Sl under exp
shall be denoted by M. The adjoint action, TT, clearly maps J^into itself.

PROPOSITION 11.1. — The adjoint action of G on M is variationally
complete.

It is clear that this property is inherited by M from G, because varia-
tional completeness is a local property along geodesies. In the same way,
if PeMis on a maximal orbit, T the maximal torus which is the centralizer
of P, and N any orbit of n in M which does not meet P, then propositions 8.1
and 8.2 transfer obviously to this situation. In order, they translate into :

PROPOSITION 11.2. — The set S(M, N, P) coincides with the set
S { M r \ T , N r \ T , P ) .
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The inverse image of TV in Sl is now unique. It shall be denoted by TV.
The unique inverse image of P in M shall be P, andS(^fot, TV^nt, P) shall
stand for the set of straight lines joining points of /V to P in M,

PROPOSITION 11.3. — The map exp | Jif, maps the lines o/S(J^n t, TVn t, jP),
onto the segments S (M^ TV, P) in a one-to-one fashion.

Finally the formula (6.10) implies that :

PROPOSITION 11 .4 . — The index of^€S'(Jifnt, TVnt, P) (properly^ of
its image in G) is given by

(11. i) y (s) •==- 2 times the number of planes of D'(G) crossed by s.

Here one could replace D(G) by the infinitesimal diagram because

M^\D(G)=Mr,Df(G).

Just as in theorem G, these propositions prove that H{^1 (M^ TV, P ) ) is
free of torsion, has vanishing odd Betti numbers, and gives a recipe for
computing their Poincare series. However, we also have :

PROPOSITION. 11 .5 . — The function space i2(Af, TV, P) is of the same
homotopy type as TV. Therefore

<11.2) H(^{M, TV, P)) wff(N).

This follows from the fact that (M, TV, P) is mapped homeomorphically
onto (M, TV, P) by exp | /ff. Therefore it is sufficient to study ^2 (T&, TV, P).
Because M is a euclidean sphere this space clearly contains the space,
^(J?, ^Y, P), consisting of the straight lines from TV^ to P, as a deformation
retract. But ̂ (^ ,̂ jP) is clearly homeomorphic to TV .̂

THEOREM III. — Let J^€t, and denote by C{X) the centralizer of X
in G. Then

a. G/C(^¥) is free of torsion;
b. The Poincare series of G/C(yf) is given by

(11.3) P(G/CW,t)==^t^\

where the summation extends over the straight lines from a general
point P in t, to the points w ' X ; we W; and ^(s)= number of planes
of D'{ G) crossed by s.

PROOF. — Notice first that all quantities in this formula remain unchanged
when X is changed to pJT; peR(p7^o) . Therefore we can assume
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that X^M, But then G / C ( ^ ¥ ) is homeomorphic to A, the orbit of X
under the adjoint representation. Hence, by proposition 11.5, the for-
mula (11.3) has to be proved for ^1{M, N, P). Via proposition 11.1
to 11.^, the argument of the first application achieves this, for we have only
replaced Nr\i by the orbit of X under W.

REMARK. — Theorem III could also have been proved by first showing
that :

PROPOSITION 11.6. — The adjoint representation : o-->Ado- of a compact
Lie group on its Lie algebra is vocationally complete.

Because the proof of this fact is the complete « infinitesimal » analogue of
what was done in Section 7, we preferred to use the foregoing argument to
obtain theorem III.

Theorem III immediately yields Part 2 of theorems A and B1. In the
latter formulation the index of s has just been evaluated as the number
of root forms of 57 which have different signs at the end points of s. The
formulation of Part 2, in theorem B, proceeds from theorem III by a straight-
forward counting argument, which we leave to the reader.

12. APPENDIX I : THE MORSE INEQUALITIES.

If two formal series 3Ti(t) and ^(t) satisfy the condition

3n(t) — ̂ (t) = (i 4- t) B (<) ,

where £(t) has non-negative coefficients, we write 3}Z(t)>^{t) and
say Jll(<) dominates ^(t). It is clear that domination is a transitive relation
between formal power series

If
:m(0=^m^, ^)=^/^,

f^o f^o

then the condition M(t)>^(t) is equivalently expressed by the set of
inequalities

mo^po,

(12. i) m,-m^p,-p^
m^— Wi+ mo^pi— /?i4- pQi

and these are the Morse inequalities in their best known form.
The simplest instance in which they occur is the case of a finite complex AT.

For if we set : mi= number of cells of dimension ('; pi= i-th Betti number
of AT, then these integers satisfy the Morse inequalities.
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To see this, let C, Z, 2?, j^ be the space of chains, cycles, boundaries, and
homology classes of a finite complex Ky over a field k. Let

C(<)=]^{ rankC,}^,

and define Z(t)j • • • similarly. Then by definition of the quantities
involved, we have the exact sequences

(12.2) o-^Z-^C-^-^o,
(12.3) o->£-^Z->ff^o.

Remembering that the boundary homomorphism d : C—^B reduces
dimension by one these sequences imply that

C(t)==Z(t)^t£(t),
Z(t)==£(t)-^ff(t).

Adding we obtain C(t)—ff(t) == ( i 4- t) B(t), i .e . just the Morse ine-
qualities.

An obvious abstraction of this construction gives the following proposition.

PROPOSITION 12.1. — Let A ==:^^An be a graded vector space of finite

type, with differential operator d: An->An—i^ and let A (t) == ̂ , dim (An) ̂ n.
n>0

Ifff(A) is defined in the usual way as the kernel of d modulo the image
of d, then the series H (A) (t)=\d.imffn(A)tn, and A (t) satisfy
the Morse inequalities
(12.4) A(t)>ff(A)(t).

With the aid of this proposition, the proof of the Morse inequalities can
be brought back to one of Morsels basic deformation theorems by the use
ofLeray's spectral sequence [8]. To do this one proceeds in the following
manner (see for instance [3]). Suppose then that the Morse series
of (M, N, P) exists (P a regular point of M— N). Let S == S(M, N, P),
Q =^(M, N, P). Also, | *S |, shall denote the set of lengths of the segments
of S. By proposition 4.1, | S \ will be a discrete set of real numbers a<
which we assume to be indexed by i== i, 2, 3, ... in a monotone increasing
fashion, a^'> ai. And /; (c=o, 1 ,2 , .. .), shall be a separating set of | S ,

o < lo < ^i < /i < 0.2 < ....

For any real number /, define

Q (l)={ueQ\L(u)^l},
^r(l)=z{ue^\L(u)<l}.
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Finally,
r^), ( ,==0,1 ,2 ) ,

^i^=\ _ .
( 0 the vacuous set, (<< o.

The singular chains, C(S1) of ^2 are filtered by the subgroups

C(%) (ieZ).

For we clearly have C(^+i)3C(^), while C(^) == U 67(^) as L is
i€Z

continuous on 12. In the resulting spectral sequence

E,=^ff(Q^^
iez.

Recall now the basic proposition concerning spectral sequence [8], [11 a] :

PROPOSITION 12.2. — If in the grading of C(f^) (which is bounded from
below !) EI is of finite type^ then :

a. ff(^i) is of finite type for each ('eZ;

b. The images A offf(^i) in ff(^) constitute a filtering of ff(^), i.e.

^A==o, A,-i3A, \^jD,=fI(^),
i€Z

c. If H (^2) == ̂  Di^Di then <^H is naturally isomorphic to E^^ in a
i^Z

dimension-preserving fashion, where E^ is the limit of a sequence of
graded groups Er (r==i^ 2, ...) with differential operators dr {which
decrease the dimension index by one) such that Er+i is the homology
groups HEr^ of Er with respect to dr'

Here E^ is the limit of the Er in the following sense : given an
integer n^ there exists an integer rn such that Er^=Er^^= ... in
dimensions ̂ n. Then E^ is by definition isomorphic to this « stable »
group in dimensions ̂  n,

Suppose now that E^ is of finite type so that the above proposition applies.
For a fixed field k as coefficients, let

Er(t), E^(t), W^)(t), /IW(t)

be the Poincare series of the corresponding graded groups. Then by pro-
perty 6, ^ff(Q) (t) = ff(Q) ( t ) while by property c

E,(t) > Er(t)> E^(t) =^ff(Q) (Q,



APPLICATION OF THE MORSE THEORY. 275

whence f^i(t) >> H(^l) (t). We therefore have the following corollary :

COROLLARY 12.1. — Under the conditions of this proposition the Poincare
series of Ey dominates the Poincare series of ff(^l) for any coefficient
field k.

This corollary disposes then of the algebraic part of the nondegenerate
theory of Morse. The second, much harder and geometric part, is given by
the subsequent proposition.

For each a^e j *S'|, let &)i denote the segments of *S' of length precisely a^.
The symbol &)< will also stand for the union of the points in ^2 which these
segments represent. Here is a form of Morse's basic theorem [9, p. 229],
[io, p. 57].

THEOREM. — a. The inclusion

(^-(a,)u^, I2-(a,))-^(/,), ̂ -i))

induces an isomorphism onto in the singular homology f

b. ffn(^-(ai)us, ̂ -(a,))=Z^_^)(P).

Here s is any segment of S of length a^ ^.(s) is its index, and P is a
point.

This proposition in effect evalutes the term Ey of the earlier spectra
sequence. In particular, if the Morse series of {M^ TV, P) exists, then Ey is
of finite type and

3\i(M,N,P){t)=E,{t)

for any field of coefficients. By our earlier remarks this proposition there-
fore yields the Morse inequalities.

We should draw attention to the fact that our definition of the index of a
geodesic segment s has consistently differed from the one given in SEIFERT-
TRELFALL. That the two definitions are actually the same is the content
of Morse's highly nontrivial focal point theorem [9, p. 58]. The definition
given here is the more geometric one. All our applications depend on it
heavily.

13. APPENDIX II : THE BETTI-NUMBERS OF .ZT,;, 2^7 AND 2^g.

Theorem B of the introduction gives the Poincare series of Q^(G) in the
form

(13.i) PWG)^t)=^t^\
A€J-

where ^ ( A ) ==:^[Q^(.r)] (i== i, . . ., m, Q^ the positive roots of ^, and x
any interior point of A),
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On the other hand, P((^(G), t) is also given by the formula

(13.2) ( I — ^i-1) }-1 . . . { i — ^(/^-l)^

Further these pHi determine the Poincare series of the group itself, namely
/

(13.3) P(G, t) =}j{ i + t^-^).
/=!

During a recent conversation, J. P. Serre heuristically obtained a relation
between the numbers m^, by comparing these two expressions near t==i.
Here we will derive it. Very fortuitously this formula determines the
numbers, m^ for the exceptional Lie groups E^ E^ and E^.

The relation in question is the following one : Let cp,, . . . , < ? / be the
/

subset of the ( 9^ jy which describe the bounding planes of^. Let d=^fdi cpii^•
1

/ 2m

be the dominant root of^, and set a^^a^i equal to the sum ^ 6^ of all
i i

the root forms in { 9^ }^. The il integers di and ft, are uniquely determined
up to order by the group. We refer to the di as the coefficients of the
dominant root, and to the di as the coefficients of the sum of the positive
roots. The mi are called the exponents of G.

PROPOSITION 13.1. — Let G be simple^ connected^ simply connected and
compact. Then the following relation holds

l l l
(13.4) n[J^J](m,-i)=J]a,.^j

1 1 i

Here l is the rank of G, the di are the coefficients of the dominant root
of G, the ai are the coefficients of the sum of the positive roots of G and
the mi are the exponents of G.

PROOF. — Let cpi, . . . , c ^ be the bounding planes of ^ as before.
Let ^i, .. ., ei be the dual basis to the cpi[i.e. <pi(^/) == 3f/]. The points of ^
are then precisely the points of the form

X=^Xid (A\->O).

Let / be the unit cube of the closure of ^

/== ^ X-zzi^XiCi | 0 ̂ Xi^_\ ( '
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Let Tt : ̂  -> ̂ r, be the translation

77K^)=(^r+^).
Finally, if(/ii, ..., /i/) is an n-tuple of non-negative integers, define I(n^ ..., ni)

•by
/(/ii, ..., m) = 7^ o r?« o . . . o Tp o /.

It is easily checked that these translated cubes form a closed covering, f7, of
the closure of-^. Further, distinct cubes have disjoint interiors. Hence

2/^S (2/"4
A€^ ^e^ (Ae/'s )

Because all root forms take integral values on any e^ the function \ trans-
forms according to the law

\{x + Of) =X(.r) -+- a, [ai=a{€i)}.

Hence \ { ^(A) j ==^(A) + a,-. Therefore, \iT=I{n^ . . . , Tie), then

'V ^(A)^; ̂ n^t^n^t ^ _ f-niai V ^X(A),

AE^' A € ^

It follows that
^

^^(A)^F[(I_^^-I^(^),
AG^ 1

where

<>(^)=^^(A).

Ae^
Finally ( i — ^ 2 a i ) admits a factor ( i — ^ 2 ) , as a<> o. Bringing this in
evidence we obtain

i /(fl(-i) \
(13.5) ^t^={i-t^f[i ^ t^QW.

AeJ i \ o /

Similarly (i — t2) can be factored from each term of (13.2), yielding
I /(mi-l) \ -1

(13.6) P(Q(G)^,t)=(l^t9^~p[^ 2^) •
i=l \ 0 /

If we equate the last two equations, cancel (i — I9)"1 and then set / == i, we
obtain

/ /(13.7) n^rr^---1^0-i <=i
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It remains to compute <?( i ) . Clearly this number counts the number of
cells, A, in /. By means of the basis e^ the cube / corresponds to the unit
cube o^Xi^i. In this same basis the first cell in F^ is given by the

/

equations : .a^^o; and ^.diXi^i where di are the coefficients of the
i

dominant root. Hence the volume of A in the euclidean volume of the X(

( ' )~1
is < / 'TT^i \ • The volume of / is clearly i. The number, Q(i), of cells

in / is therefore given by
/

Q(i)=l\Y[d^
i

This proves the formula.
As an application of this new relation, we will compute the Betti

numbers of j^c, E^ and jEg* These numbers are of course known already»
They were first announced by Chih-Ta Yen in his Comptes rendus
Note : Sur les polynomes de Poincare des groupes de Lie exceptionels
(C. /?. Acad. Sc.^ vol. 228, i949» p. 628-63o). They were explicitly derived
by Borel and Chevalley in their paper : The Belli numbers of the excep-
tional groups {Memoirs Math. Soc.^ N° 14). Our relation gives a conside-
rably shorter way to the result for E-i and especially for E^. However this
happens purely by chance — the (m^— i ) all turn out to be primes !

The coefficients, d^ of the dominant roots are well known. They are
listed, for instance, in the paper by J. de Siebenthal : Sur les sous-troupes
fermes... (Corn. Math. Helv.^ vol. 25, igSi, p. 210-256). We will
compute the a[s for the three groups E^ E^^ E^. This is done most effi-
ciently from the Cartan integers, as / learned from A. Shapiro.

In terms of the bounding forms, cpf, of F^ the Cartan integers can be
defined in the following manner : Let 7?, be the reflection of t in the
plane <^i== o. Then /?; induces a transformation JR^ on the linear forms oft.

Further 7^*(py==cpy—a^cpf ( i , y= i , . .., /). The numbers a^- are preci-
sely the Cartan integers. These integers are determined in turn by the
Schlaefly figure of the group in question. For E^ E^ and E^ these fiigures
are reproduced below

1 2 . T 4 5 1 2 3 * 5 6

7

E, E,
1 2 ' 3 ' I — — — — — S—————6—————t

8
E.
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and in these cases they determine the Cartan integers according to the
following simple convention

0(/f==2,

— i if vertex i is joined to vertex j by an edge,
11 o otherwise.

2 m

Consider now the sum of the positive root forms, a = ̂ . 6^. Under
i

every R*i ( t==i, ..., /), cp< is changed into — cp; while the other terms of a are
permuted. Hence

(13.8) /? ;a=a—2cp, ( t = = i , . . . , / ) .

If a==^ ci}^j1 th^n R\ a can also be computed directly

/?;a=V ay(cp;—a^).
-—i

/'

Equating this expression with the right hand side of (13.8) we obtain

(13.9) ^aya^=2.

These linear conditions determine ay uniquely. In terms of the diagram,
(13.8) is equivalent to the following recursion relation

207== 2 + sum of the a'^s at adjacent vertices on the diagram.

Assuming that 01==^, (13.8) allows one to compute all the a'^ s in terms
of ^, and finally yields a linear equation in ^. Proceeding in this fashion we
obtain :

For E^ : The a,- are given (in increasing subscript order), by :

^ ,2(^~ i ) , 3 ( A — 2 ) , 5 ( ^ — I O ) , 2(?i—8), -i^-^). Finally )i= 16. Hence
2 2

these numbers are : 24 ; 2.3.5; 3.2.7; 2.3.5; 24; 11.2; and
6

na^^12^3^2^.!!.
1

The <a?/s are given by i, 2, 3, 2, i, 2. Our relation therefore yields
6

(13.10) n^W——l):^:!^3^^.!!.

l
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For 7̂ : Thea;s : "A, 2 ( ^ — 1 ) , 3 ( ^ — 2 ) , 4 (^—3) , 3 ( X — 5 ) , aft-io),
7

< 2 ^ — 5 ) , with ^=27. Hence FTa/rrr 29.36.52.72. n . i3.17. Here
i

the di have the values i , 2, 3, 4» 3, 2, a. Therefore by (13.4)
7

<13.II) ^"[(/^--I)^:!^2.^.!!.^.^.

1

For .Eg : The a/s : \ 2 (^—1) , 3 ( ^ — 2 ) , 4 (^—3) , 5 ( ^ — 4 ) , ^ ( > . — 2 i ) ,
5

2 ( A — i 2 ) , - ( ^ — 9 ) » with ^=58. The <s : 2, 3, 4, 5, 6, 4, 2, 3.2
Therefore by (13.4)

8

<13.i2) J J ( w < — I ) = = I . 7 . I I . I 3 . l 7 . I 9 • 2 ^ • 2 9 •
i

The exponents, m^ of a simple group G have the following elementary
property

{13.13) m/^ a, mi= 2 for precisely one f,
/

< 1 3 . i 4 ) V ( 2 / ^ — i ) = = d i m G .
i

r/te relation (13.4), together with these two conditions uniquely deter-
mines the exponents mi of E^ E^^ and E^ [We set rhi-=. (w/— i).]

E^\ Let the w^ ((== i, .. . ,6 ) be ordered in increasing order.
Then w, == i, dim ̂  == 78. Therefore

Wa + ms +... + We == 35.

From this sum we conclude that amongst the five numbers 7n^ . . . » We
there must be an odd number of odd numbers. From (13.10), we know

6

that | | Wf= 2s. 5.7. n. Therefore the only odd numbers that can occur
2

are 5, 7, and n. If only one of them occurred, say n, then at least 2.5
and 2.7 must occur. But n -+-io+i4= 35. This is impossible as then
all the others would have to be zero. The situation is even worse if only 7
or 5 occurred. Hence all three, 5, 7 and 11 occur among the Tni (i= 2, ..., 6).
Sayw4==5, W5==7, W6==n. Then Jn^-\- m^ ==12, and again by (13.9),
7^2== 2", W3==2?, a -h (3 = 5. This implies that W2:=4»7 W3= 8. Hence
the 7n/ are given by

i , 4, 5, 7, 8, i i ,
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and the Poincare polynomial of E^ is

( I + t3) (I -+- t9) (I -+- { i i) ( I + t^) ( I -f- <1 7 ) ( I -4- ^23).

7

jE'7 : The dimension of .£7 is i33. Therefore if Wi = i, then ^m<=62.
2

By (13.12), the product of the m, is the product of 32, 5, 7, n, i3, 17.
Further the sum of these numbers is precisely 62. They are therefore the
only solutions, and the Poincare polynomial of E^ is given by

(i + t3) (i -+- ^11) (i -t- <15) ( i -+- / l 9) (i -+- t^) (i + <27) (i -+- <35).

8

E^ : In this case j |w^==7.n.i3.17.19.23.29. As there are seven
2

prime numbers there is no ambiguity, and the Poincare polynomial of E^ is

( I 4 - ^ ) ( I + ^ l s ) ( I 4 - < 2 3 ) ( I + r - 7 ) ( I + ^ 5 ) ( I + < 3 9 ) ( I - K 4 7 ) ( I 4 - < 5 9 ) .
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